Power Supply

Despite what manufacturers might want you to believe, power supplies are less about wattage and more about the amount and quality of current that they can supply. In theory, the Watts rating of a PSU can be determined with the current and voltage ratings. Using the equation P = I x V (Power = Current x Voltage), you can come up with a Wattage for each voltage that the PSU provides, add them all together, and you have the rating. Simple enough, right? Unfortunately, there are problems with this method of rating a power supply.

The biggest problem is that PCs don't require equal amounts of power from each voltage, and the wattage rating simply serves to obfuscate the real power levels. The +12V rating is generally the most important rating, and modern ATX2.0 PSUs actually require two +12V rails (i.e. outputs form the PSU). Two 500W PSUs from different manufacturers could actually have wildly different characteristics in the type of power that they provide. In a really bad PSU, reality can be further distorted by providing high output ratings on the -5V and -12V lines. Computers draw very little power from the negative lines, so if a PSU were to rate the -12V line at 3A instead of a more common 1A (or less), they can inflate their wattage by 25W or more. As if that isn't bad enough, there are even more ways to "cheat" the rating.

Temperature plays a role in determining the output capacity of a power supply. You can read about it elsewhere, but the main concept is the following: "The thermal capacity of materials changes slightly with temperature primarily due to changes in density." Part of what allows a power supply to provide current at a specific voltage is the ability to transform the 115V input from the wall (or 230V in other areas of the world) to a different value. Such a change creates heat, and the heat has to be dissipated. Inside a power supply, you will find heat sinks much like what you see on a motherboard, along with a cooling fan or fans. Depending on how the power supply is rated, it might actually provide 450W at 10 degrees C and only 375 W at 30 degrees C. (You'd have to know the specific heat values for the various materials inside a PSU to really be able to calculate how temperature affects the output capacity for a specific PSU.) Nearly all modern computers will have a case temperature in the 30 degrees C or higher range, so a PSU rated using 10-25 degrees C values is far from a realistic representation of the PSU's output capacity.

Lastly, just because a power supply can provide a specific output doesn't mean it can do so well. In the US, power from the wall outlets comes at 115V, but variance is allowed. In fact, the output voltage can fluctuate between 110V and 121V (5%) while still being within spec. That may be fine for some household items like lamps and coffee makers, but computers tend to be a little more demanding in their requirements. A power supply that outputs 3.2V, 4.8V, and 11.5V is still technically within the required range, and there's a good chance that it will work with a typical PC. What really causes problems are fluctuations, which are usually influenced by the use of lower quality components as well as temperature changes. Even though a PSU might work in a regular PC, though, overclocking really pushes things to the limit, and it's far better to have a PSU that can output voltages exactly at spec than a few percent high or low.

One of the easiest ways to determine the quality of a power supply is to simply pick it up. A 500W power supply should weigh quite a bit more than a 350W power supply; if it doesn't, be suspicious. Reading the label on a power supply can be helpful, but that doesn't usually tell you the temperature at which it was tested, and of course, it could always be inaccurate. The saying "you get what you pay for" also applies, so if a PSU costs far less than the rating would suggest, it's likely that the unit isn't really as good as the sticker claims. A better idea is to just go with a respected name, as we suggested with motherboards. Our top picks for PSU manufacturers are Antec, Enermax, Fotron Source, OCZ, and Seasonic. Enermax, OCZ and Seasonic are probably the safest bets, as they don't really have "value" and "performance" parts right now, though the more expensive Antec and Fotron Source units are just as good. If you want a high quality power supply and you're shopping online, here's the fastest test: does it cost less than $75? If so, it's probably a moderate unit, and under $50 is an inexpensive unit. The good power supplies almost always cost $80 or more. If you're not sure, though, ask around! Some times, there are good deals to be had on high quality power supplies.


Click to enlarge.

We're using an OCZ PowerStream 600W power supply for our system. There are bigger, better power supplies out there for extreme overclocking, but they cost a lot more. We're not going to be playing with liquid nitrogen or even phase change cooling, so the 600W OCZ is more than sufficient. With adjustable voltages and a dual 20A +12V rails, we have everything that we need from a quality power supply.

With all the above talk about getting a quality power supply, we also ran some tests using a cheap PSU that came with an even cheaper case. The case was the MGE and 400W PSU that we recommended in our last Budget Buyer's Guide. The case is flimsy, made of thin aluminum, and the cables for the front USB and Firewire ports were very difficult to work with - they were separated into single-pin connectors rather than a block of pins. It's impossible to say what the long-term reliability of such a case is, but it's been running nearly 24/7 for a couple of months now without any problems. The highest overclocks seemed a bit less stable with the 20-pin power connection, but we did manage to match the overclock of the OCZ PowerStream 600W. Maximum power draw for the test configuration was measured at around 220W, so we never came close to the 400W power rating.

Memory Options Case and CPU Cooling
Comments Locked

101 Comments

View All Comments

  • Powered by AMD - Monday, October 3, 2005 - link

    Do not forget The Athlon XP 1700+ 1.5Volts, DLT3C, mines is OC from 1467 Stock to 2250 Mhz and pretty cool with an old Thermaltake Blower...
    It can ever reach 2450 Mhz but with 1.8 Volts.
    hey, at 2250 Mhz its a 53% OC too!!
    Great article but it will be useful for me only when I need an Athlon 64 :p
  • donkeycrock - Monday, October 3, 2005 - link

    i noticed that frys is selling x-connect (500 Watts)psu for 25 dollars after rebate. it is extremely heavy, and not many reviews say if they are very good PSU's for overclocking, anybody have knowladge about this PSU.

    thanks
    brad
  • cryptonomicon - Monday, October 3, 2005 - link

    nice article jarred, and you worded the disclaimers perfectly, bravo.

    and its nice to see those ram comparisons. good to see those results on the latest a64 platform and confirm once again that the ram makes only a few percentage points difference, if that. shelling out all your dough on a good GPU, then buying the lowest model venice, a DFI board, and value ram is the way to go.
  • Googer - Monday, October 3, 2005 - link

    http://www2.amd.com/us-en/assets/content_type/Down...">AMD Thermal Grease List PDF
  • RupertS - Wednesday, October 26, 2005 - link

    Interesting, AMD only recommends thermal grease for short term use 'where the heat sink is removed and attached multiple times over a short period'. They definitely do not recommend it for long term use.
  • StriderGT - Monday, October 3, 2005 - link

    Both me, Zebo and many others have clarified long time ago in Anands forum the pointless struggle of purchasing extreme memory parts in Athlon64. Dividers and value ram will do the trick of excellent ocing giving you 95%++ of the performance someone gets with expensive and overvolted ram modules. Nice seeing anandtech come up with an article backing up the threads like this one (http://forums.anandtech.com/messageview.aspx?catid...">http://forums.anandtech.com/messageview...mp;threa...

    PS For those owning MSI Neo3 m/bs -and even the rest- I have created back then an excel calculating the actual memory frequency with the various BIOS settings. Enjoy
    http://www.geocities.com/gtstrider/">http://www.geocities.com/gtstrider/
  • JarredWalton - Monday, October 3, 2005 - link

    Yeah, I've seen quite a few threads around the 'net on this, but AT hadn't covered it very well, and I hoped to get something "official" out there. (None of the enthusiast sites have really covered this that well, as far as I could see.) Since I've been fooling around with various AMD CPU overclocks for a year now, I figured others might like to see the possibilities. High-end, high-cost is well and good for dreams, but like most people I live a bit closer to reality. $200 is about as much as I'm willing to pay for a CPU in most cases.
  • andyc - Monday, October 3, 2005 - link

    So you can basically overclock the 3000 to the same speeds the 3200 can? So it's not even worth it to go with the 3200?
  • JarredWalton - Monday, October 3, 2005 - link

    Well, perhaps. 9x300 requires a better motherboard than 10x270, though most boards than can handle 270 MHz CPU bus speeds will also handle 300 I think. For value overclockers, though, I don't think I'd bother spending the extra $50 on the 3200+, no. Spend it on the GPU instead (if you play games).
  • Mogadon - Monday, October 3, 2005 - link

    Great article Jarred, thanks for putting in all the hard work and time.

    I have one question regarding voltages. As I understand it, you wouldn't recommend running a VCore above 1.65V for a long term overclock. I understand the warnings and possible effects on the CPU with running a high VCore but I wanted to know if this is around the VCore that you would run on, say, your overclocked system?

    The majority of people on the forums here don't really recommend going above 1.55V or 1.6V, i was wondering if you had any comments about this.

Log in

Don't have an account? Sign up now