Final Words

Compared to former power supplies from Silverstone we can say that the company made an aggressive but logical step forward. With 650 watt it is one of the higher performing power supplies and therefore not suiting every users needs. With an efficiency of over 80% at lower loads (with 230VAC) it could run a decent medium class PC without wasting too much energy.

Due to the increasing temperature of our tests, we saw the voltages drop, especially on the lower voltage rails. The chosen high-end components have been a good fit for the most part but heat is still an issue. The new crew of engineers has come up with a good PCB design as well. From the high overall quality, one can literally see the robots installing these components.

The heatsinks have a very clever shape to let much air through to the PCB to cool down most of the components where they stand. They have a decent thickness as well which allows for a lot of heat conduction. The temperature of the heatsinks was average but we have seen colder ones. As for fan speed, the produced noise level was not the best result we could have hoped for, but it seems to be necessary to cool down the power supply to keep it working properly. We would love to see Silverstone take a second look at the fan speed and adjustments. The sound issue shouldn't be a real problem for most users who chose this PSU, as they will not be able to load the PSU anywhere near 80%. Not many people will ever hear this power supply with full load.

Protection features work fine in this model. The power supply correctly shuts down with any potential threat to its life such as over current or over power. Our short circuit test on each line during different loading stages had a positive outcome too with no damage to our unit.

In case of efficiency the OP650 has surprised us in a good way. At 230VAC it reached 80% efficiency with the impressively low load of 20%. At a medium load we saw an impressive 83% efficiency which held on until our highest load tests. At the lowest input of 115VAC we could only reach an efficiency of 81% which is still a very good result. In case of standby efficiency we measured just about 1.19W at 115VAC and 1.7W at 230VAC which is not a very high energy loss: exactly what we would like to see.

The price of the OP650 is just about $160 in the United States and around 139€ in Europe which is a reasonable price for a 650W power supply. It is a good price for the quality and performance this power supply brings to the table.

The build quality of the Olympia series is unmatched from other series of Silverstone PSUs which makes it the highest performer the company offers. We are looking forward where this leads in the future and what power supplies Silverstone will put out next.

Acoustics
Comments Locked

46 Comments

View All Comments

  • Martimus - Friday, July 13, 2007 - link

    It was a nice article. I know not to buy this PSU now when I build my roommates computer later this month. I don't like how it falls out of spec at high loads. I would like to see a review on the PC P&C 750W Silencer Quad, as that was what I was planning on using for his computer.

    Looking at that board frightened me, seeing as how much power was in that supply, and how close together the components were. I hope that they can increase the size of the standard power supply to help alleviate this problem now that we are building computers that have such high loads. I used to design and test power supplies (albeit for automotive conponents) and seeing how they crammed those parts so close together was scary. That is an easy way to kill the reliability and life of your supply. The heat just kills the board and components. Although it does reduce problems like parasitic capacitance. Maybe that is why many manufactures are avoiding using the top mounted 120mm fan; to keep from having to package the component like that.
  • yacoub - Friday, July 13, 2007 - link

    quote:

    If you leave the PC off for a long period of time, you should still always hit the switch or unplug the cable.


    But doesn't that mean the motherboard will need to use its little battery backup to keep the BIOS settings? Turning off the PSU switch and/or unplugging the cable to fully remove power sounds like a way to kill your motherboard's battery quickly.
  • mindless1 - Wednesday, July 18, 2007 - link

    It is only a "suggestion", there is just as valid an argument to not unplug it unless you're on a quest to save every last bit of power possible which is a nobile goal but put in perspective, a bit of a band-aid since anyone using a modern computer to access webpages is wasting orders of magnitude more power, even ignoring the typical products with large power consumption.

    It might be said that unplugging also provides some protection against surges, limiting exposure to them, but it's really something that would have to be considered on a per-site basis, remembering that most people don't unplug their computers any day of the year and seldom is surge damage a recurring problem. IOW, a matter of how much extra effort to put forth to guard against something that, statistically, isn't likely to happen.
  • DerekWilson - Friday, July 13, 2007 - link

    iirc, your mobo battery is in use when the computer is off and the PSU is on anyway. i could be wrong ... its been like a decade since i paid attention to that.

    But either way, mobo batteries last years even when their not powered up.
  • SpaceRanger - Friday, July 13, 2007 - link

    Very nice work on AT's first PSU review with such detail. One question though, what happened to the Ripple and Noise results from the PSU? In the methodology they were mentioned to be tested, yet not in this review?

    Looking forward to more PSU reviews..
  • Shadowmage - Friday, July 13, 2007 - link

    I agree. The reviews must have ripple. That's why Jonnyguru's reviews are so highly regarded.
  • mindless1 - Wednesday, July 18, 2007 - link

    and yet, we don't really need to know the ripple values so long as they stay within ATX specs at the max rated loads and all crossloading combinations possible. Within these limits, lower ripple is not necessarily "better" per se, if it were important to have lowest possible ripple we wouldn't be using switching PSU at all or they'd at least have an addt'l stage of LC filtration before the output.
  • LTG - Friday, July 13, 2007 - link

    The first page leaves out an explanation of why multiple rails are used in the first place.

    I'm sure many technical software people, who don't know hardware, wonder like I do, why wasn't it always just one rail?

    Just a couple sentences would probably be helpful.

    thanks.
  • qpwoei - Friday, July 13, 2007 - link

    A PSU having multiple rails just means that a single rail in the PSU runs through a number of parallel current limiters - so all lines on the 12V1 rail go through one 20A current limiter, all lines on 12V2 go through another, etc. This is done as IEC safety requirements (and consequently ATX PSU requirements) say that "operator accessible" connections must not be able to deliver more than 240 VA (ie: 20 A at 12 V).

    In older PSUs, only a single current limiter was used as there was no requirement for maximum current per line. In many recent PSUs, the single current maximum is starting to come back as well due to the high current requirements of modern GPUs and motherboards.
  • mindless1 - Wednesday, July 18, 2007 - link

    While it is common (because it's cheaper to implement) for a 12V multi-rail PSU to use parallel current limiters, it is not necessarily true that all are designed this way, typically only those built towards lower component cost instead of higher sustainable current. Other options include having separate capacitance after the current limiter (resistor), or a second inductor-cap LC stage, or additionally a separate rectifier stage, or additionally a separate transformer (essentially going backwards towards building in a 2nd supply until available space and budget limit it).

Log in

Don't have an account? Sign up now