So Dual-Cores are no Longer Extreme?

It may be hard to believe, but the quad-core concept just celebrated its first birthday. Launched in late 2006, this anniversary also signifies the introduction of a rather significant adjustment to Intel's eternally-evolving marketing strategy. For the first time ever, Intel has decided not to produce a dual-core Extreme Edition variant of their leading quad-core product offering. That means there are currently no plans to manufacture a 45nm dual-core CPU featuring an unlocked multiplier (or as Intel likes to put it, with "overspeed protection removed"). Until now, this made choosing the right processor easy: those that lacked the means (or the need) for a quad-core could feel content in knowing they would not be expected give up having an unlocked multiplier should they decide to go with the dual-core in lieu of quad. Now, anyone that wants to enjoy the operational freedom that comes with having a fully adjustable multiplier with a 45nm processor will have to pony-up the dough for a QX9650 (or QX9770) or go without.

We recognize this change for what it really is - a bold move when it comes to fulfilling the needs of enthusiasts worldwide, considering how a vast majority of today's games and applications still favor systems with fewer high-speed cores over those with more cores at lower frequencies. Intel's decision to supply processors with unlocked multipliers under an "Extreme Edition" branding became an essential ingredient in the creation of all future roadmaps. Eventually these unique processors became the basis for a new class of computing platforms, one that embodied a shift in marketing philosophy. Rather than focus solely on serving the large OEMs, Intel also recognized the direct importance of the enthusiast community. We could argue that when it came to winning the admiration and approval of overclockers, enthusiasts, and power users alike, no other single common product change could have garnered the same overwhelming success.

Our love affair with the quad-core began not too long ago, starting with the release of Intel's QX6700 Extreme Edition processor. Ever since then Intel has been aggressive in their campaign to promote these processors to users that demand unrivaled performance and the absolute maximum amount of jaw-dropping, raw processing power possible from a single-socket desktop solution. Quickly following their 2.66GHz quad-core offering was the QX6800 processor, a revolutionary release in its own right in that it marked the first time users could purchase a processor with four cores that operated at the same frequency as the current top dual-core bin - at the time the 2.93GHz X6800. From there only a small default FSB speed bump from 266Mhz (1066 quad-pump) to 333Mhz (1333 quad-pumped) and a stepping change from B3 to G0 was all that was needed to justify the creation of the QX6850, which ran at a slightly higher speed of 3.0Ghz (9x333). Again, the X6850 matched the QX6850 in every way but one, that being that it had two fewer cores.

Writing multithreaded code that makes efficient use of four or more cores is a daunting task - to date few applications and even fewer game developers are able to boast of this accomplishment. Given this, is it that hard to admit that perhaps we've all been a little guilty of demanding too much, too soon from our favorite software vendors? It should not be surprising then to learn then that many of today's ultimate gaming machines make use of "lesser" dual-core CPUs in place of their quad-core counterparts. With most titles able to take advantage of only two cores at a time, optimum gaming performance (read: maximum FPS) is often achieved by running a dual-core CPU at a greater frequency than is attainable using even the best quad-core processors.

Because dual-cores can often be coaxed to run at a higher, final stable speed then quad-core CPUs - which also consume significantly more power - most modern games have been engineered to make use of no more than two threads simultaneously executing in parallel. These games thus benefit from the additional overclocking headroom of dual-core CPUs. Meanwhile, in the case of the quad-core processor, approximately half of the processing resources sit idle while the code executes on any two of the four slower cores.

If you're not an overclocker, aside from the obvious processor count increase from two to four cores, there is little difference between Intel's top-end dual-core E8500 and their QX9650 Extreme Edition quad-core CPU. Each is fabricated based on exactly the same underlying 45nm, second-generation Core 2 architecture. Both interface with their host motherboard's MCH at an equivalent quad-pumped FSB speed of 1333MHz. And technically speaking, on a by-core basis, each must contend for the same amount of shared Level 2 cache (6MB per die). The only real difference is their core operating frequencies - the E8500 at 3.16GHz (9.5x333) and the QX9650 at 3.00Ghz (9x333). Because of the raw speed advantage, if the target application or game only makes use of two cores then the E8500 ends up being the better choice.

This isn't to say that the quad-core CPU is left without the existence of a proper application - far from it. Programs that heavily rely on the impressive parallel processing capabilities of a quad-core processor can realize up to nearly double the per-clock performance. This is especially true of tasks that lend themselves to the use of multiple program instances. For example, consider an encoding program that makes use of only two cores. Running two instances, and simultaneously encoding two files, would effectively load all four cores. Of course, this assumes there is a work queue in which the next available job can be drawn from, without which no benefit could be realized. There are certainly applications where more cores is almost always better; whether you use those applications on a regular basis is the real question.

E8000 Lineup and Early Overclocking Results "Accurate" Temperature Monitoring?
Comments Locked

45 Comments

View All Comments

  • chizow - Wednesday, March 5, 2008 - link

    Only had an issue with this statement:

    quote:

    Intel has also worked hard to make all of this performance affordable. Many US retailers now stock the 65nm Q6600 quad-core CPU at less than $200, which places it squarely in the 45nm dual-core price range - something to think about as you make your next purchasing decision. However, if it comes down to the choice between a 65nm and 45nm CPU we would pick the latter every time - they are just that good. The only question now is exactly when Intel will decide to start shipping in volume.


    While this may be true for those building a new system around a new CPU, this might not hold true for those looking to overclock using an existing board. These 45nm CPUs with their higher stock 1333 FSB will by necessity use lower multipliers which essentially eats into potential FSB overclocks on FSB-limited chipsets. Considering many 6-series NV chipsets and boards will not support Penryn *at all* this is a very real consideration for those looking to upgrade to something faster.

    Given my experiences with NV 6-series chipsets compared to reviews, I'm not overly optimistic about Penryn results on the 7-series either. Curious as to which board you tested these 45nm with? I haven't kept up with P35/X38 capabilities but the SS you showed had you dropping the multiplier which is a feature I thought was limited to NV chipsets? I might have missed it in the article, but clarification would be appreciated.

  • TheJian - Thursday, March 6, 2008 - link

    I have a problem with this part of that statement "Intel has also worked hard to make all of this performance affordable." They forget it was AMD who forced Intel to cut margins on cpus from 62% (I think that was their high a few years back) to a meager 48% (if memory serves) and their profits to tank 60% in some quarters while driving AMD into the ground. Do they think they were doing it for our sakes? NOT. It was to kill AMD (and it worked). WE just got LUCKY.

    How much INTEL butt kissing can you do in one article? Notice that since AMD has sucked Intel is starting to make an ABOUT FACE on pricing. Server chips saw an increase of 20% about a month ago or so (it was written about everywhere). Now we see the E8400 which was $209 on newegg just a few weeks ago and IN STOCK, is said to go for $250 if you believe Anandtech. Even newegg has their future chips when they come back in stock now priced at $239. That's a $30 increase! What is that 14% or so? I missed the first E8400's and thought it would go down, instead Intel restricts volume and causes a price hike to soak us since AMD sucks now. I hope AMD puts out a decent chip shortly (phenom 3ghz would be a good start) so we can stop the price hikes.

    What's funny to me is the reviewers let Intel get away with pricing in a review that comes nowhere near what it ACTUALLY debuts for. They've done the same for Nvidia also (not just anand, but others as well). The cards always end up being $50 more than MSRP. Which screws competitors because we all wait for said cheap cpu/gpu and end up not buying a very good alternative at the time (on the basis of false pricing from Intel/Nvidia). They should just start saying in reviews, "but expect $50 more upon debut than they say because they always LIE to get you to not buy the competitors product". That would at least be more accurate. For the record I just bought an 8800GT and will buy a wolfdate in a few weeks :) My problem here is the reviewers not calling them out on this crap. Why is that?
  • mindless1 - Wednesday, March 5, 2008 - link

    Yes you are right that the higher default FSB works against them, it would be better if a Pentium or Celeron 45nm started with lower FSB so the chipsets had enough headroom for good overclock.

    NV is not the only one that can drop the multiplier, I've not tried it on X38 but have on P35 and see no reason why a motherboard manufacturer would drop such a desirable feature unless the board simply was barren of o'c features, something with OEM limited bios perhaps.
  • Psynaut - Wednesday, March 5, 2008 - link

    It took me a minute to figure out that they were talking about the chips that were released 6-8 weeks ago.
  • squito - Wednesday, March 5, 2008 - link

    Same here ... maybe they need to be reintroduced?
  • Johnbear007 - Wednesday, March 5, 2008 - link

    Where in the U.S. do you see a Q6600 for under 200$???? I still see it at 245$ at newegg and your own anandtechshopping search doesn't come anywhere near the pricepoint you mention.
  • XtAzY - Wednesday, March 5, 2008 - link

    If you take a look at Hot Deals last month, you could have gotten a q6700 for $80

    http://hardforum.com/showpost.php?p=1032017513&...">http://hardforum.com/showpost.php?p=1032017513&...

    but of course it's already over
  • smithkt - Wednesday, March 5, 2008 - link

    That was for the e6700 not the q6700
  • firewolfsm - Wednesday, March 5, 2008 - link

    With core 2s, you can always do a minor frequency overclock while actually undervolting it. With a decent cooler, it could even last longer than stock.
  • ap90033 - Wednesday, March 5, 2008 - link

    Is it me or was this a little to negative on the OC stuff? I mean really, if you have good cooling, keep the voltage 1.44 or lower I bet the CPU would last 2-3 years or more...

    It almost sounds like they are marketing for Intel, "Great Overclokcer" but wait dont OC just get the highest model or it will only last 10 minutes!

Log in

Don't have an account? Sign up now