...and then disaster struck.

Or at least that's how it felt. The past few weeks have been incredibly tumultuous, sleepless, and beyond interesting. It is as if AMD and NVIDIA just started pulling out hardware and throwing it at eachother while we stood in the middle getting pegged with graphics cards. And we weren't just hit with new architectures and unexpected die shrinks, but new drivers left and right.

First up was GT200, which appeared in the form of the GeForce GTX 280 and GeForce GTX 260. Of course, both of those can be paired or tri-ed (if you will), but with two cards requiring at least a 1200W PSU we're a bit worried of trying three. Then came the randomness that was the accidental launch of the Radeon HD 4850 (albeit with no architectural information) and only a couple hours later we first heard about the 9800 GTX+ which is a die shrunk higher clocked 9800 GTX that is now publicly announced and will be available in July.

And now we have the other thing we've been working on since we finished GT200: RV770 in all it's glory. This includes the 4850 whose performance we have already seen and the Radeon HD 4870: the teraflop card that falls further short of hitting its theoretical performance than NVIDIA did with GT200. But theoretical performance isn't reality, and nothing can be done if every instruction is a multiply-add or combination of a multiply-add and a multiply, so while marketing loves to trot out big numbers we quite prefer real-world testing with games people will actually play on this hardware.

But before we get to performance, and as usual, we will want to take as deep a look into this architecture as possible. We won't be able to go as deep with RV770 as we could with GT200, as we had access to a lot of information both from NVIDIA and from outside NVIDIA that allowed us to learn more about their architecture. At the same time, we still know barely anything about the real design of either NVIDIA or AMD's hardware as they prefer to hold their cards very close.

This won't work long term, however. As we push toward moving compute intensive applications to the GPU, developers will not just want -- they will need low level architectural information. It is impossible to properly optimize code for an architecture when you don't know exact details about timing, latency, cache sizes, register files, resource sharing, and the like. While, this generation, we have decidedly more information from NVIDIA on how to properly program their architecture, we still need more from both AMD and NVIDIA.

And Now, the Rest of the Story

Last week was a weird teaser - we gave you the goods, without explaining what they were.

By now you know that the Radeon HD 4850 is the best buy at $199, but today we're able to tell you much about its inner workings as well as introduce its faster, more expensive sibling: the Radeon HD 4870.

ATI Radeon HD 4870 ATI Radeon HD 4850 ATI Radeon HD 3870
Stream Processors 800 800 320
Texture Units 40 40 16
ROPs 16 16 16
Core Clock 750MHz 625MHz 775MHz+
Memory Clock 900MHz (3600MHz data rate) GDDR5 993MHz (1986MHz data rate) GDDR3 1125MHz (2250MHz data rate) GDDR4
Memory Bus Width 256-bit 256-bit 256-bit
Frame Buffer 512MB 512MB 512MB
Transistor Count 956M 956M 666M
Manufacturing Process TSMC 55nm TSMC 55nm TSMC 55nm
Price Point $299 $199 $199

Priced at $299 the Radeon HD 4870 is clocked 20% higher and has 81% more memory bandwidth than the Radeon HD 4850. The GPU clock speed improvement is simply due to better cooling as the 4870 ships with a two-slot cooler. The memory bandwidth improvement is due to the Radeon HD 4870 using GDDR5 memory instead of GDDR3 used on the 4850 (and GDDR4 for 3870); the result is a data rate equal to 4x the memory clock speed or 3.6Gbps. The Radeon HD 4870 and 4850 both use a 256-bit memory bus like the 3870 before it (as well as NVIDIA's competing GeForce 9800 GTX), but total memory bandwidth on the 4870 ends up being 115.2GB/s thanks to the use of GDDR5. Note that this is more memory bandwidth than the GeForce GTX 260 which has a much wider 448-bit memory bus, but uses GDDR3 devices.

NVIDIA GeForce GTX 280 NVIDIA GeForce GTX 260 NVIDIA GeForce 9800 GTX ATI Radeon HD 4870 ATI Radeon HD 4850 ATI Radeon HD 3870
Memory Size 1GB 896MB 512MB 512MB 512MB 512MB
Memory Technology GDDR3 GDDR3 GDDR3 GDDR5 GDDR3 GDDR4
Memory Bus Width 512-bit 448-bit 256-bit 256-bit 256-bit 256-bit
Memory Clock 1107MHz 999MHz 1100MHz 900MHz 993MHz 1125MHz
Memory Data Rate 2.2Gbps 2.0Gbps 2.22Gbps 3.6Gbps 1.99Gbps 2.25Gbps
Memory Bandwidth 141.7GB/s 111.9GB/s 70.4GB/s 115.2GB/s 63.6GB/s 72.0GB/s

The use of GDDR5 enabled AMD to deliver GeForce GTX 260 class memory bandwidth, but without the pin-count and expense of a 448-bit memory interface. GDDR5 actually implements a number of Rambus-like routing and signaling technologies while still remaining a parallel based memory technology, the result is something that appears to deliver tremendous bandwidth per pin in a reliable, high volume solution.

AMD most likely took a risk on bringing GDDR5 to market this early and we do expect NVIDIA to follow suit, AMD is simply enjoying the benefits of jumping on the GDDR5 bandwagon early and getting it right, at least it seems that way. It wouldn't be too far fetched to imagine a 55nm GT200 die shrink with a 256-bit GDDR5 memory interface, it should allow NVIDIA to drop the price down to the $300 level (at least for the GTX 260).

As we mentioned in our Radeon HD 4850 Preview, both the Radeon HD 4870 and 4850 now support 8-channel LPCM audio output over HDMI. AMD just sent over 8-channel LPCM drivers for the Radeon HD 4870 so we'll be testing this functionality shortly. As we mentioned in our 4850 preview:

"All of AMD's Radeon HD graphics cards have shipped with their own audio codec, but the Radeon HD 4800 series of cards finally adds support for 8-channel LPCM output over HDMI. This is a huge deal for HTPC enthusiasts because now you can output 8-channel audio over HDMI in a motherboard agnostic solution. We still don't have support for bitstreaming TrueHD/DTS-HD MA and most likely won't anytime this year from a GPU alone, but there are some other solutions in the works for 2008."

The Radeon HD 4870 is scheduled for widespread availability in early July, although AMD tells us that some cards are already in the channel. Given that the 4870 relies on a new memory technology, we aren't sure how confident we can be that it will be as widely available as the Radeon HD 4850 has been thus far. Keep an eye out but so far the 4850 has been shipping without any issues at $199 or below, so as long as AMD can get cards in retailers' hands we expect the 4870 to hit its $299 price point.

AMD's "Small-Die" Strategy
Comments Locked

215 Comments

View All Comments

  • shadowteam - Wednesday, June 25, 2008 - link

    Did you know these chips can do up to 125C? 90C is so common for ATI cards, I haven't had one since 2005 that didn't blow me hair dry. Your NV card was just a bad chip I suppose. Why do you think NV or ATI would spend a billion dollars in research work, then let its product burn away due to some crappy cooling? They won't give you more cooling than you actually need. It's the same very cards that go to places like Abu-Dhabi, where room temps. easily hit 50C+.
  • soloman02 - Wednesday, June 25, 2008 - link

    Sorry, but no human would survive a temp of 50C.
    http://en.wikipedia.org/wiki/Thermoregulation#Hot">http://en.wikipedia.org/wiki/Thermoregulation#Hot
    In fact the highest temp a human has survived was recorded by the Guinness book of world records as: 46.5C (115.7F). Keep in mind that was the internal temp of the guy. The temp on that day was 32.2C (90F).
    http://www.powells.com/biblio?show=0553587129&...">http://www.powells.com/biblio?show=0553587129&...
    http://www.time.com/time/magazine/article/0,9171,9...">http://www.time.com/time/magazine/article/0,9171,9...

    If it is 50C in those rooms, the people inside are dead or dying.

    The cards are probably fine. All it takes is to search google to back up your figures (or to disprove them like I just did).
  • shadowteam - Wednesday, June 25, 2008 - link

    You're just a dumb pissed off loser. There's a big difference in internal human temperature to its surroundings. In places like Sahara, temperatures routinely hit 45C, and max out @ 55C. But does that mean people living there just die? No they don't, because they drink a lot of water, which helps their bodies get rid of excess heat so to keep their internals at normal temperature (32C). You didn't have this knowledge to share so you decided to Google it instead, and make fool out of yourself. Here, let me break it down for you,

    You said: "Keep in mind that was the internal temp of the guy"

    Exactly, the guy was sick, and when you're sick, your body temperature rises, in which case 46C is the limit of survival. I suggest you take Bio-chemistry in college to learn more about human body, which is another 4 years before you finish school.
  • Ilmarin - Wednesday, June 25, 2008 - link

    I'm not talking about chips failing altogether... just stability issues, similar to what you experience from over-zealous overclocking. Lots of people have encountered artifacting/crashes with stock-cooled cards over the years. If these are just 'bad chips' that are experiencing stability issues at high temps, then there are a lot of them getting through quality control. Of course NV and ATI do enough to make most people happy... but many of us have good reason to be nervous about temperature. I think they can and should do better. Dual slot exhaust coolers should be mandatory for the enthusiast/performance cards, with full fan control capability. Often it's up to the partners to get that right, and often it doesn't happen for at least a couple of months.
  • shadowteam - Wednesday, June 25, 2008 - link

    I think it's more profitable for board partners to just roll out a stock card rather than go through the trouble of investing time/money into performance cooling. What I've seen thus far, and it's quite apparent, that newer companies tend to go exotic cooling to get themselves heard. Once they're in the game, it's back to stock cooling. For example, Palit and ECS came up with nice coolers for its 9600s. Remember Leadtek from past years? They don't even do custom coolers any more. ASUS, Powercolor, Gigabyte, Sapphire etc just find it easier to throw in a 3rd party cooler from ZM, TT TR, and call it a day.
  • DerekWilson - Wednesday, June 25, 2008 - link

    you know we actually received an updated bios for a certain vendors 4850 that speeds the fan up a bit and should reduce heat ...

    i suspect a lot of vendors will start adjusting their fan tables actually ...
  • shadowteam - Wednesday, June 25, 2008 - link

    I think this reply was meant for the guy right above me. I'm all for stock cooling :).
  • ImmortalZ - Wednesday, June 25, 2008 - link

    "Quake Wars once again shows the 4870 outperforming the GTX 280, but this time it offers essentially the same performance as the GTX 280 - but at half the price. "

    You mean the 260 in the first instance?

    No text in The Witcher page. I assume this is intentional.

    Also, I've heard on the web that the 48xx series has dual-link only on one of it's DVI ports. Is this true?

    Oh and another thing - why is the post comment page titled "Untitled Page"? :P
  • rahat5810 - Wednesday, June 25, 2008 - link

    Nice cards and nice article. But I would like to point out that there are some mistakes in the article, nothing fatal though. Like, not mentioning 4870 in the list of cards, writing 280 instead of 260, clicking on the picture to enlarge not working for some of the figures.
  • feelingshorter - Wednesday, June 25, 2008 - link

    AMD almost has a perfect card but the fact that the 4870 idles at 46.1 more watts than the 260 means the card will heat up people's room. At load, the difference of 16.1 watts more for the 4870 is forgivable.

    If its possible to overclock a card using software (without going into BIOS screen), then why isn't it possible to underclock a card also using software when the card's full potential isn't being used? I'd really be interested in knowing the answer, or maybe someone just hasn't asked the question?

    I hardly care about Crysis, its more a matter of will it run Starcraft II with 600 units on the map without overheating. Why doesn't anandtech also test how hot the 4870 runs? Although the 4850 numbers aren't pretty at all, the 4870 is a dual slot cooler and might give better numbers right? I only want to know because, like a lot of readers, i have doubts as to whether a card like the 4850 can run super hot and not die within 1+ years of hardcore gaming.

Log in

Don't have an account? Sign up now